FDTD Based Seismic Modeling and Reverse Time Migration on a GPU Cluster
نویسندگان
چکیده
We have designed a fast parallel simulator that solves the acoustic wave equation on a GPU cluster. Solving the acoustic wave equation in an oil exploration industrial context aims at speeding up seismic modeling and Reverse Time Migration. We use a finite difference approach on a regular mesh, in both 2D and 3D cases. The acoustic wave equation is solved in either a constant density or a variable density domain. We use CUDA to take advantage of the GPUs computational power. We study different implementations and their impact on the application performance. We obtain a speedup of 11 for Reverse Time Migration and up to 30 for the modeling application over a sequential code running on general purpose CPU.
منابع مشابه
GPGPU-Aided 3D Staggered-grid Finite-difference Seismic Wave Modeling
Finite difference is a simple, fast and effective numerical method for seismic wave modeling, and has been widely used in forward waveform inversion and reverse time migration. However, intensive calculation of three-dimensional seismic forward modeling has been restricting the industrial application of 3D pre-stack reverse time migration and inversion. Aiming at this problem, in this paper, a ...
متن کاملOverlapping computation and communication of three-dimensional FDTD on a GPU cluster
Large-scale electromagnetic field simulations using the FDTD (finite-difference time-domain) method require the use of GPU (graphics processing unit) clusters. However, the communication overhead caused by slow interconnections becomes a major performance bottleneck. In this paper, as a way to remove the bottleneck,wepropose the ‘kernel-splitmethod’ and the ‘host-buffermethod’which overlap comp...
متن کاملAnalyzing the Illumination and Resolution in Seismic Survey Designing
Seismic modeling aids the geophysicists to have a better understanding of the subsurface image before the seismic acquisition, processing, and interpretation. In this regard, seismic survey modeling is employed to make a model close to the real structure and to obtain very realistic synthetic seismic data. The objective of this study is to analyze the resolution and illumination of the fault by...
متن کاملGPU-Accelerated Parallel Finite-Difference Time-Domain Method for Electromagnetic Waves Propagation in Unmagnetized Plasma Media
The finite-difference time-domain (FDTD) method has been commonly utilized in the numerical solution of electromagnetic (EM) waves propagation through the plasma media. However, the FDTD method may bring about a significant increment in additional run-times consuming for computationally large and complicated EM problems. Graphics Processing Unit (GPU) computing based on Compute Unified Device A...
متن کاملA Novel Scheme for High Performance Finite-Difference Time-Domain (FDTD) Computations Based on GPU
Finite-Difference Time-Domain (FDTD) has been proved to be a very useful computational electromagnetic algorithm. However, the scheme based on traditional general purpose processors can be computationally prohibitive and require thousands of CPU hours, which hinders the large-scale application of FDTD. With rapid progress on GPU hardware capability and its programmability, we propose in this pa...
متن کامل